• 1

 

Project Coordinator


 

Dr Georg Stettinger

 
Infineon Technologies AG
81726 München
Germany

Towards Fault Simulation at Mixed Register-Transfer/Gate-Level Models

Endri Kaja, Nicolas Gerlin, Mounika Vaddeboina, Luis Rivas, Sebastian Prebeck, Zhao Han, Keerthikumara Devarajegowda, Wolfgang Ecker

Abstract: Safety-critical designs used in automotive applications need to ensure reliable operations even under hostile operating conditions. As these designs grow in size and complexity, they are facing an increased risk of failure. Consequently, the methods applied to validate the reliability of designs require increasingly more compute resources (e.g., fault simulation time) and manual efforts. Rigorous and highly automated safety analysis methods are needed to cope with this rising complexity. In this paper, we propose a model-based safety analysis flow to enable fault injection at different abstraction levels of a design. The fault simulation is performed at register transfer level (RTL) of a design, in which parts of the design targeted for fault simulation are represented with gate-level granularity. This mixed representation of a design provides a significant rise in fault simulation performance while maintaining the same accuracy as a gate-level fault simulation. To demonstrate the applicability of the proposed approach, various RISC- V based CPU subsystems that are part of automotive SoCs are considered for fault simulation. The experimental results show an increase of 3.5x - 8.4x in the fault simulation performance with substantially less manual effort as all the design activities are automated utilizing a model-driven RTL generation flow.


Towards Fault Simulation at Mixed Register-Transfer/Gate-Level Models


 

Acknowledgement

ArchitectECA2030 has been accepted for funding within (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programs under grant agreement No 877539.

The project will receive an ECSEL JU funding up to 4 M€ completed with national budgets from national funding authorities in Germany, Netherlands, Czech Republic, Austria and Norway.  

Project Facts

Short Name: ArchitectECA2030

Full Name: Trustable architectures with acceptable residual risk for the electric, connected and automated cars

Duration:  01/07/2020- 30/06/2023

Total Costs: ~ € 13,6 Mio.

Consortium: 20 partners from 8 countries

Coordinator: Infineon Technologies AG

Funding

 

Horizon 2020
Horizon 2020

 

    

National Funding

National Funding

 


Social

Twitter

Twitter

    

LinkedIn

LinkedIn

 

Information

Impress

Imprint

   

Impress

Privacy Policy


 


Contact

Twitter
Contact