• 1

 

Project Coordinator


 

Dr Georg Stettinger

 
Infineon Technologies AG
81726 München
Germany

Design of a Tightly-Coupled RISC-V Physical Memory Protection Unit for Online Error Detection

Nicolas Gerlin, Endri Kaja, Monideep Bora, Keerthikumara Devarajegowda, Dominik Stoffel, Wolfgang Kunz, Wolfgang Ecker

Abstract: While semiconductors are becoming more efficient generation after generation, the continuous technology scaling leads to numerous reliability issues due, amongst others, to variations in transistors characteristics, manufacturing defects, component wear-out, or interference from external and internal sources. Induced bit flips and stuck-at-faults can lead to a system failure. Security-critical systems often use Physical Memory Protection (PMP) modules to enforce memory isolation. The standard loosely-coupled approach eases the implementation but creates overhead in area and performance, limiting the number of protected areas and their size. While delivering great support against malicious software and induced faults, better performance would benefit safety tasks by preventing the program from jumping into an undesired region and giving wrong outputs.We propose a novel model-driven approach to resolve these limitations by generating a tightly-coupled RISC-V PMP, which reduces the impact of run-time reconfiguration. We also discuss guidelines on configuring a PMP to minimize the overhead on performance and memory, and provide an area estimation for each possible PMP design instance. We formally verified a RISC-V Core with a PMP and evaluated its performance with the Dhrystone Benchmark. The presented architecture shows a performance gain of about 3 times against the standard implementation. Furthermore, we observed that adding the PMP feature to a RISC-V SoC led to a negligible performance loss of less than 0.1% per thousand PMP reconfigurations..


Design of a Tightly-Coupled RISC-V Physical Memory Protection Unit for Online Error Detection


 

Acknowledgement

ArchitectECA2030 has been accepted for funding within (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programs under grant agreement No 877539.

The project will receive an ECSEL JU funding up to 4 M€ completed with national budgets from national funding authorities in Germany, Netherlands, Czech Republic, Austria and Norway.  

Project Facts

Short Name: ArchitectECA2030

Full Name: Trustable architectures with acceptable residual risk for the electric, connected and automated cars

Duration:  01/07/2020- 30/06/2023

Total Costs: ~ € 13,6 Mio.

Consortium: 20 partners from 8 countries

Coordinator: Infineon Technologies AG

Funding

 

Horizon 2020
Horizon 2020

 

    

National Funding

National Funding

 


Social

Twitter

Twitter

    

LinkedIn

LinkedIn

 

Information

Impress

Imprint

   

Impress

Privacy Policy


 


Contact

Twitter
Contact