• 1

 

Project Coordinator


 

Dr Georg Stettinger

 
Infineon Technologies AG
81726 München
Germany

Finding Critical Scenarios for Automated Driving Systems: A Systematic Literature Review

Xinhai Zhang, Jianbo Tao, Kaige Tan, Martin Törngren, Jose Manuel Gaspar Sanchez, Muhammad Rusyadi Ramli, Xin Tao, Magnus Gyllenhammar, Franz Wotawa, Member, Naveen Mohan, Member, Mihai Nica and Hermann Felbinger

Abstract: Scenario-based approaches have been receiving a huge amount of attention in research and engineering of automated driving systems. Due to the complexity and uncertainty of the driving environment, and the complexity of the driving task itself, the number of possible driving scenarios that an ADS or ADAS may encounter is virtually infinite. Therefore it is essential to be able to reason about the identification of scenarios and in particular critical ones that may impose unacceptable risk if not considered. Critical scenarios are particularly important to support design, verification and validation efforts, and as a basis for a safety case. In this paper, we present the results of a systematic literature review in the context of autonomous driving. The main contributions are: (i) introducing a comprehensive taxonomy for critical scenario identification methods; (ii) giving an overview of the state-of-the-art research based on the taxonomy encompassing 86 papers between 2017 and 2020; and (iii) identifying open issues and directions for further research. The provided taxonomy comprises three main perspectives encompassing the problem definition (the why), the solution (the methods to derive scenarios), and the assessment of the established scenarios. In addition, we discuss open research issues considering the perspectives of coverage, practicability, and scenario space explosion


Finding Critical Scenarios for Automated Driving Systems: A Systematic Literature Review


 

Acknowledgement

ArchitectECA2030 has been accepted for funding within (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programs under grant agreement No 877539.

The project will receive an ECSEL JU funding up to 4 M€ completed with national budgets from national funding authorities in Germany, Netherlands, Czech Republic, Austria and Norway.  

Project Facts

Short Name: ArchitectECA2030

Full Name: Trustable architectures with acceptable residual risk for the electric, connected and automated cars

Duration:  01/07/2020- 30/06/2023

Total Costs: ~ € 13,6 Mio.

Consortium: 20 partners from 8 countries

Coordinator: Infineon Technologies AG

Funding

 

Horizon 2020
Horizon 2020

 

    

National Funding

National Funding

 


Social

Twitter

Twitter

    

LinkedIn

LinkedIn

 

Information

Impress

Imprint

   

Impress

Privacy Policy


 


Contact

Twitter
Contact