• 1

 

Project Coordinator


 

Dr Georg Stettinger

 
Infineon Technologies AG
81726 München
Germany

Reduction of empiricism in the solder joint reliability assessment of QFN packages by using thermo-mechanical simulations

M. van Soestbergen; R. Roucou; M. Rebosolan; J.J. M Zaal

Abstract: To ensure sufficient field life of solder joints, standardized stress tests are performed during the development phase of products, where calibrated thermo-mechanical simulations are frequently used to ensure a potentially sufficient robustness margin. In this work we show how simulations are calibrated for the QFN (Quad Flat No leads) package family. Using thorough failure analysis, we found that for QFN packages two types of solder joint failure modes can occur. The first failure mode is a brittle fracture through the intermetallic region near the solder interface, the other mode is a crack through the bulk of the solder. In the simulations we handle both failure modes using two different failure metrics. For the brittle fractures we analyzed the volumetric strain energy density in a thin region near the interface. For bulk fails we computed the volume-averaged inelastic strain energy density across the whole solder joint. Using both metrics we found a correlation between simulation and experimental results, where Miner’s rule was used to correlate the results of any non-functional anchor joint to the experimental results of the functional joints. The correlation can be used to predict the solder performance upfront in the design phase, and thus reduce the experimental effort during product development.


Reduction of empiricism in the solder joint reliability assessment of QFN packages by using thermo-mechanical simulations


 

Acknowledgement

ArchitectECA2030 has been accepted for funding within (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programs under grant agreement No 877539.

The project will receive an ECSEL JU funding up to 4 M€ completed with national budgets from national funding authorities in Germany, Netherlands, Czech Republic, Austria and Norway.  

Project Facts

Short Name: ArchitectECA2030

Full Name: Trustable architectures with acceptable residual risk for the electric, connected and automated cars

Duration:  01/07/2020- 30/06/2023

Total Costs: ~ € 13,6 Mio.

Consortium: 20 partners from 8 countries

Coordinator: Infineon Technologies AG

Funding

 

Horizon 2020
Horizon 2020

 

    

National Funding

National Funding

 


Social

Twitter

Twitter

    

LinkedIn

LinkedIn

 

Information

Impress

Imprint

   

Impress

Privacy Policy


 


Contact

Twitter
Contact